Dynamic Regulation of Vascular Permeability by Vascular Endothelial Cadherin-Mediated Endothelial Cell-Cell Junctions.
نویسندگان
چکیده
Endothelial cells lining blood vessels regulate vascular barrier function, which controls the passage of plasma proteins and circulating cells across the endothelium. In most normal adult tissues, endothelial cells preserve basal vascular permeability at a low level, while they increase permeability in response to inflammation. Therefore, vascular permeability is tightly controlled by a number of extracellular stimuli and mediators to maintain tissue homeostasis. Accordingly, impaired regulation of endothelial permeability causes various diseases, including chronic inflammation, asthma, edema, sepsis, acute respiratory distress syndrome, anaphylaxis, tumor angiogenesis, and diabetic retinopathy. Vascular endothelial (VE)-cadherin, a member of the classical cadherin superfamily, is a component of cell-to-cell adherens junctions in endothelial cells and plays an important role in regulating vascular permeability. VE-cadherin mediates intercellular adhesion through trans-interactions formed by its extracellular domain, while its cytoplasmic domain is anchored to the actin cytoskeleton via α- and β-catenins, leading to stabilization of VE-cadherin at cell-cell junctions. VE-cadherin-mediated cell adhesions are dynamically, but tightly, controlled by mechanisms that involve protein phosphorylation and reorganization of the actomyosin cytoskeleton. Phosphorylation of VE-cadherin, and its associated-catenins, results in dissociation of the VE-cadherin/catenin complex and internalization of VE-cadherin, leading to increased vascular permeability. Furthermore, reorganization of the actomyosin cytoskeleton by Rap1, a small GTPase that belongs to the Ras subfamily, and Rho family small GTPases, regulates VE-cadherin-mediated cell adhesions to control vascular permeability. In this review, we describe recent progress in understanding the signaling mechanisms that enable dynamic regulation of VE-cadherin adhesions and vascular permeability. In addition, we discuss the possibility of novel therapeutic approaches targeting the signaling pathways controlling VE-cadherin-mediated cell adhesion in diseases associated with vascular hyper-permeability.
منابع مشابه
Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by t...
متن کاملPhosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo
Endothelial adherens junctions maintain vascular integrity. Arteries and veins differ in their permeability but whether organization and strength of their adherens junctions vary has not been demonstrated in vivo. Here we report that vascular endothelial cadherin, an endothelial specific adhesion protein located at adherens junctions, is phosphorylated in Y658 and Y685 in vivo in veins but not ...
متن کاملeNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases.
Transient disruption of endothelial adherens junctions and cytoskeletal remodeling are responsible for increases in vascular permeability induced by inflammatory stimuli and vascular endothelial growth factor (VEGF). Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is crucial for VEGF-induced changes in permeability in vivo; however, the molecular mechanism by which endogenous NO mo...
متن کاملJunctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin–mediated cell–cell contacts
We recently reported that junctional adhesion molecule (JAM)-C plays a role in leukocyte transendothelial migration. Here, the role of JAM-C in vascular permeability was investigated in vitro and in vivo. As opposed to macrovascular endothelial cells that constitutively expressed JAM-C in cell-cell contacts, in quiescent microvascular endothelial cells, JAM-C localized mainly intracellularly, a...
متن کاملThe neurotransmitter dopamine modulates vascular permeability in the endothelium
BACKGROUND Vascular permeability factor/Vascular endothelial growth factor (VPF/VEGF), a multifunctional cytokine, is a potent inducer of vascular permeability, an important early step in angiogenesis. It is known that the neurotransmitter dopamine can inhibit VPF/VEGF mediated angiogenesis, in particular microvascular permeability, but the effectors of this action remain unclear. RESULTS Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Nippon Medical School = Nippon Ika Daigaku zasshi
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2017